Quadratic Fun Problems

Justin Stevens

Problem 1. (Mandelbrot) Determine the positive integer a such that $x^8 + 5x^6 + 13x^4 + 20x^2 + 36$ is evenly divisible by $x^2 - x + a$.

Solution. Let $n(x) = x^8 + 5x^6 + 13x^4 + 20x^2 + 36$ and $d(x) = x^2 - x + a$, so

$$n(x) = d(x)q(x)$$
 for $q(x) \in \mathbb{Z}[x]$.

Since a is the constant term of d(x), it must divide 36. Substituting x = 1 into the equation,

$$n(1) = d(1) \cdot q(1) \implies 75 = a \cdot q(1).$$

Since $a \mid 75$, $a \mid 36$, and a is positive, a = 1 or a = 3. Substituting x = -2 gives

$$n(-2) = d(-2) \cdot q(-2) \implies 900 = (a+6) \cdot q(-2).$$

Since $7 \nmid 900$, we must have a = 3. Using long division, we verify

$$x^{8} + 5x^{6} + 13x^{4} + 20x^{2} + 36 = (x^{2} - x + 3)(x^{6} + x^{5} + 3x^{4} + 4x^{2} + 4x + 12).$$

Problem 2. (AIME) Find integer values a and b such that $x^2 - x - 1$ is a factor of $ax^{17} + bx^{16} + 1$. *Hint:* Use Binet's Formula.

Solution. We know φ and ψ are the roots of $x^2 - x - 1$. Since $\varphi^2 = \varphi + 1$, we see that

$$\varphi^3 = \varphi^2 + \varphi = 2\varphi + 1$$
$$\varphi^4 = \varphi^3 + \varphi^2 = 3\varphi + 2$$

$$\varphi^5 = \varphi^4 + \varphi^3 = 5\varphi + 3.$$

These coefficients are Fibonacci numbers! We can prove by induction that $\varphi^n = F_n \varphi + F_{n-1}$. Since $x^2 - x - 1$ divides $ax^{17} + bx^{16} + 1$, φ must also be a root of $ax^{17} + bx^{16} + 1$. Therefore,

$$a\varphi^{17} + b\varphi^{16} + 1 = a(F_{17}\varphi + F_{16}) + b(F_{16}\varphi + F_{15}) + 1 = 0.$$

Hence, $aF_{17} + bF_{16} = 0$ and $aF_{16} + bF_{15} + 1 = 0$. We solve $a = F_{16} = \mathbf{987}$ and $b = -F_{17} = -\mathbf{1597}$. We can verify the second equation by Cassini's identity: $F_{16}^2 - F_{15}F_{17} = -1$.

Problem 3. Prove that the harmonic sum

$$H_n = \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n} = \sum_{k=1}^n \frac{1}{k}$$

is never an integer for $n \geq 2$. Hint: Consider the 2-adic valuation.

Solution. Let $a_j = n!/j$ for $1 \le j \le n$, hence we can rewrite the sum as

$$\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n} = \frac{a_1 + a_2 + a_3 + \dots + a_n}{n!}.$$

Let the largest power of 2 less than or equal to n be $r=2^s$. Hence,

$$v_2(a_1 + a_2 + \dots + a_n) = v_2(a_r)$$

= $v_2(n!) - v_2(r)$
< $v_2(n!)$.

There are more factors of 2 in the denominator than numerator, so H_n is never an integer. \Box

Problem 4. (Cassini's Identity) Prove that $F_{n+1}F_{n-1} - F_n^2 = (-1)^2$.

Solution. Notice $\varphi \psi = -1$ and $\varphi - \psi = \sqrt{5}$. Using Binet's formula and manipulation,

$$F_{n+1}F_{n-1} - F_n^2 = \frac{1}{5} \left[\left(\varphi^{n+1} - \psi^{n+1} \right) \left(\varphi^{n-1} - \psi^{n-1} \right) - \left(\varphi^n - \psi^n \right)^2 \right]$$

$$= \frac{1}{5} \left[-\varphi^{n+1} \psi^{n-1} - \psi^{n+1} \varphi^{n-1} + 2\varphi^n \psi^n \right]$$

$$= -\frac{1}{5} \left(\varphi \psi \right)^{n-1} \left(\varphi^2 - 2\varphi \psi + \psi^2 \right)$$

$$= -\frac{1}{5} \left(-1 \right)^{n-1} \left(\varphi - \psi \right)^2$$

$$= (-1)^n.$$

Problem 5. Prove that 60 divides xyz for a Pythagorean triple (x, y, z).

Solution. Since $60 = 3 \cdot 4 \cdot 5$, we examine the equation $a^2 + b^2 = c^2$ modulo 3, 4, and 5. We use the method of proof by contradiction three times:

• Assume that $3 \nmid abc$. The quadratic residues mod 3 are 0 and 1, so

$$c^2 \equiv a^2 + b^2 \equiv 1 + 1 \equiv 2 \pmod{3}$$
.

However, 2 is not a quadratic residue mod 3, contradiction. Therefore, $3 \mid abc$.

• Assume that $5 \nmid abc$. The quadratic residues mod 5 are 0, 1, and 4 so either

$$c^2 \equiv a^2 + b^2 \equiv 1 + 1 \equiv 2 \pmod{5}, \qquad c^2 \equiv a^2 + b^2 \equiv 4 + 4 \equiv 3 \pmod{5}.$$

However, 2 nor 3 is a quadratic residue mod 5, contradiction. Therefore, $5 \mid abc$.

• Assume that $4 \nmid abc$. If a and b are both odd, then $c^2 \equiv a^2 + b^2 \equiv 1 + 1 \equiv 2 \pmod{4}$, a nonresidue. WLOG let a be even. The quadratic residues mod 8 are 0, 1, and 4, so

$$a^2 \equiv c^2 - b^2 \equiv 1 - 1 \equiv 0 \pmod{8}.$$

Therefore, $4 \mid a$. If b and c are even, we still have $4 \mid abc$.

Since we have proven the statement for 3, 5, and 4, we conclude that $60 \mid abc$.

Problem 6. Prove the inradius of a Pythagorean triple is always an integer.

Solution. Let the triple be $\{x,y,z\} = \{2kmn, k(m^2 - n^2), k(m^2 + n^2)\}$ for an integer k. We compute the area of the triangle in two ways: 1/2r(x+y+z) = 1/2xy. Substituting gives

$$r \cdot k(2mn + m^2 - n^2 + m^2 + n^2) = (2kmn) \cdot (k(m^2 - n^2)).$$

Simplifying, $r \cdot 2km(m+n) = 2kmn(m+n) \cdot [k(m-n)]$, so r = k(m-n), an integer. \Box