Divisibility Solutions

Justin Stevens

Problem 1. (AIME) Find the sum of all positive two-digit integers that are divisible by each of their digits.

Solution. Let the two digit number be N=10a+b. We see that we must have $a\mid 10a+b$ and $b\mid 10a+b$. The first condition gives $a\mid b$ and the second gives $b\mid 10a$. Therefore, we must either have b=a,b=2a, or b=5a. These give the resulting values of N=11a,N=12a, and N=15a.

- If N = 11a, then N = 11, 22, 33, 44, 55, 66, 77, 88, 99 which has a sum of $11\left(\frac{9\cdot10}{2}\right) = 11\cdot45 = 495$.
- If N = 12a, then N = 12, 24, 36, 48 for a sum of 120.
- If N = 15a, then N = 15 for a sum of 15.

Hence, the smallest sum is 495 + 120 + 15 = 630

Problem 2. (HMMT) For what single digit N does 91 divide the 9-digit number 12345N789.

Solution. Observe that $1001 = 91 \cdot 11$. Therefore, we have $1000 \equiv -1 \pmod{91}$. Notice that

$$123450789 = 123 \cdot 10^6 + 450 \cdot 10^3 + 789 \equiv 32 + (-5) \cdot -1 + 61 = 98 \equiv 7 \pmod{91}.$$

Therefore, we see that $12345N789 = 7 + 1000N \equiv 7 - N \equiv 0 \pmod{91} \implies N = \boxed{7}$. \square

Problem 3. (HMMT) What is the smallest 5-digit palindrome that is a multiple of 99?

Solution. Observe that a 5-digit palindrome is of the form

$$XYZYX = 10000X + 1000Y + 100Z + 10Y + X = 10001X + 1010Y + 100Z.$$

Notice that 99 | 9999 and 99 | 990, therefore, we see that $10001 \equiv 2 \pmod{99}$ and $1010 \equiv 20 \pmod{99}$. Hence, the entire expression is

$$10001X + 1010Y + 100Z \equiv 2X + 20Y + Z \equiv 0 \pmod{99}.$$

Since X, Y, and Z are all digits, we have $0 \le X, Y, Z \le 9$. Hence, 2X + 20Y + Z = 99 or 2X + 20Y + Z = 198.

• In the first case, the smallest palindrome we obtain is when Y = 4 giving 2X + Z = 19. We must have $Z = 9 \implies X = 5$, giving the palindrome 54945.

• In the second case, the smallest palindrome we obtain is when Y = 9 giving 2x + Z = 18. We must have $Z = 8 \implies X = 5$, giving the palindrome 59895.

The smaller of the two cases is 54945.

Problem 4. (AMC) When we divide the numbers 1059, 1417, and 2312 by an integer d > 1, the remainder is the integer r. Find d and r.

Solution. By the division algorithm, there exists three integers quotients q_1, q_2 , and q_3 such that

$$1059 = dq_1 + r$$

$$1417 = dq_2 + r$$

$$2312 = dq_3 + r.$$

Subtracting the equations in pairs gives:

$$358 = d(q_2 - q_1), 895 = d(q_3 - q_2), 1253 = d(q_3 - q_1).$$

Hence, d must divide $358 = 2 \cdot 179, 895 = 5 \cdot 179, 1253 = 7 \cdot 179$. We therefore conclude that $d = \boxed{179}$. Now, dividing 1059 by 179 gives $1059 = 179 \cdot 5 + 164$. Therefore, $r = \boxed{164}$.

Problem 5. Recall the divisibility rule for 7, which claimed that if $7 \mid 10a+x$, then $7 \mid a-2x$.

(i) Prove that if $13 \mid 10a + x$, then $13 \mid a + 4x$.

Solution. Let N = 10a + x. Since $13 \mid N$, we must have $13 \mid 4N$. Observe that

$$4N = 40a + 4x = 39a + (a + 4x).$$

Therefore, since $13 \mid 4N$ and $13 \mid 39a$, we must have $13 \mid a + 4x$.

(ii) State and prove a divisibility rule for 17.

Solution. The divisibility rule for 17 is if $17 \mid 10a + x$, then $17 \mid a - 5x$. To prove this, observe that if $17 \mid N$, then

$$17 \mid 12N = 120a + 12x = 119a + 17x + (a - 5x).$$

Since $17 \mid 119a + 17x$, we must have $17 \mid a - 5x$.

Note: The key insight in discovering this was that $12 \cdot 10 \equiv 1 \pmod{17}$.

Problem 6. Use the definition of divisibility to show the following three statements.

(i) Show that if $d \mid n_1$ and $d \mid n_2$, then $d \mid n_1c_1 + n_2c_2$ for integers c_1 and c_2 .

Solution. Since d divides n_1 , there exists an integer q_1 such that $n_1 = q_1 d$. Similarly, there exists an integer q_2 such that $n_2 = q_2 d$. Therefore,

$$n_1x_1 + n_2x_2 = (q_1d) x_1 + (q_2d) x_2$$

= $d(q_1x_1 + q_2x_2)$.

Hence, d divides $n_1x_1 + n_2x_2$. In other words, if $d \mid n_1$ and $d \mid n_2$, then d divides all linear combinations of n_1 and n_2 .

(ii) Show that if $d \mid m$ and $m \mid n$, then $d \mid n$.

Solution. Since $d \mid m$, there exists an integer q_1 such that $m = q_1 d$. Since $m \mid n$, there exists an integer q_2 such that $n = q_2 m$. Substituting for n and m, we see that

$$n = q_2 m = q_2 (q_1 d) = d (q_2 q_1).$$

Hence, $d \mid n$. For instance, $7 \mid 49 \mid 98$, therefore, $7 \mid 98$.

(iii) Show that if $dc \mid nc$, then $d \mid n$.

Solution. Since $dc \mid nc$, this implies there exists an integer q such that

$$nc = q(dc)$$
.

Dividing this equation by c, we arrive at n = qd, or alternatively, $d \mid n$.

Problem 7. Recall from class that all perfect squares are of the form 3k or 3k + 1.

(i) Show that every perfect square is of the form 4k or 4k + 1.

Solution. Let the perfect square be of the form n^2 . If n is even, then n = 2m for some integer m. Hence, $n^2 = 4m^2$ which is of the form 4k. Alternatively, if n is odd, then n = 2m + 1 for some integer m. Hence,

$$n^2 = (2m+1)^2 = 4m^2 + 4m + 1 = 4(m^2 + m) + 1,$$

which is of the form 4k + 1 where $k = m^2 + m$.

(ii) Show that every perfect square is of the form 5k, 5k + 1, or 5k + 4.

Solution. We break this into casework based on the remainder when n is divided by m.

(a) If the number is of the form n = 5m, then $n^2 = 25m^2 = 5(5m^2)$.

(b) If the number is of the form n = 5m + 1, then

$$n^2 = 25m^2 + 10m + 1 = 5(5m^2 + 2m) + 1.$$

(c) If the number is of the form n = 5m + 2, then

$$n^2 = 25m^2 + 20m + 4 = 5(5m^2 + 4m) + 4.$$

(d) If the number is of the form n = 5m + 3, then

$$n^2 = 25m^2 + 30m + 9 = 5(5m^2 + 6m + 1) + 4.$$

(e) If the number is of the form n = 5m + 4, then

$$n^2 = 25m^2 + 40m + 16 = 5(5m^2 + 8m + 3) + 1.$$

Note: For the last two, we could have alternatively considered n=5m-2 and n=5m-1.

(*) Show that for all integers a and b, $ab(a^2 - b^2)(a^2 + b^2)$ is divisible by 30.

Solution. We break this into three parts: proving that 2 divides the expression, 3 divides the expression, and 5 divides the expression.

- To show that 2 divides the expression is easy: if either a or b is even, then clearly the expression is as well. Alternatively, if both a and b are odd, then $a^2 b^2$ is even.
- To prove 3, if $3 \mid a$ or $3 \mid b$, then clearly 3 divides the product. If $3 \nmid a$ and $3 \nmid b$, then we have $a^2 \equiv b^2 \equiv 1 \pmod{3}$. therefore, $3 \mid a^2 b^2$.
- To prove 5, if $5 \mid a$ or $5 \mid b$, then 5 divides the product. If $5 \nmid a$ and $5 \nmid b$, then we have four cases: $a^2 \equiv b^2 \equiv 1 \pmod{5}$, $a^2 \equiv b^2 \equiv 4 \pmod{5}$, or one of them is 1 and the other is 4. In the first two cases, we have $a^2 b^2 \equiv 0 \pmod{5}$. In the third case, we see that $a^2 + b^2 \equiv 1 + 4 \equiv 0 \pmod{5}$. In every case, 5 divides the product.

Since we have shown that 2, 3, and 5 all divide the product, we conclude that the product is divisible by 30. \Box

Problem 8. The *n*th triangular number is defined as $T_n = 1 + 2 + 3 + \cdots + n$.

(i) Show that $T_n = \frac{n(n+1)}{2}$.

Solution. We note that adding the sum reserved gives

$$T_n = 1 + 2 + 3 + \cdots + n$$

 $T_n = n + (n-1) + (n-2) + \cdots + 1.$

If we add the two equations columnwise, we see that each pair adds to n+1. Therefore:

$$2T_n = n(n+1) \implies T_n = \frac{n(n+1)}{2}.$$

(ii) Show that the quantity $8T_n + 1$ is always a perfect square.

Solution. Observe that

$$8T_n + 1 = 8\left(\frac{n(n+1)}{2}\right) + 1 = 4n^2 + 4n + 1 = (2n+1)^2.$$

(iii) Show that the sum of two consecutive triangular numbers is always a perfect square.

Solution. Observe that

$$T_{n-1} + T_n = \frac{(n-1)n}{2} + \frac{n(n+1)}{2} = n\left(\frac{n-1+n+1}{2}\right) = n \cdot n = n^2.$$

(iv) Show that $9T_n + 1$ is always a triangular number.

Solution. Observe that

$$9T_n + 1 = 9\left(\frac{n(n+1)}{2}\right) + 1 = \frac{9n^2 + 9n + 2}{2} = \frac{(3n+2)(3n+1)}{2} = T_{3n+2}.$$

 (\star) Find a formula for the sum of the first n triangular numbers.

Solution. We color the triangular numbers blue. We compute the top row by beginning with the circled 0 and adding the triangular number below it.

Continuing the method of finite differences below this gives:

Since the third row is constant, we expect our formula to be cubic. Let $p(n) = an^3 + bn^2 + cn + d$. From the circled number, $p(0) = 0 \implies d = 0$. Plugging in p(1) = 1, p(2) = 4, and p(3) = 10 gives:

$$\begin{cases} a+b+c=1\\ 8a+4b+2c=4\\ 27a+9b+3c=10. \end{cases}$$

Solving this system gives $(a, b, c) = (\frac{1}{6}, \frac{1}{2}, \frac{1}{3})$. Hence,

$$p(n) = \frac{1}{6}n^3 + \frac{1}{2}n^2 + \frac{1}{3}n = \boxed{\frac{n(n+1)(n+2)}{6}}.$$